A matroid-friendly basis for the quasisymmetric functions
نویسنده
چکیده
A new Z-basis for the space of quasisymmetric functions (QSym, for short) is presented. It is shown to have nonnegative structure constants, and several interesting properties relative to the quasisymmetric functions associated to matroids by the Hopf algebra morphism F of Billera, Jia, and Reiner [3]. In particular, for loopless matroids, this basis reflects the grading by matroid rank, as well as by the size of the ground set. It is shown that the morphism F distinguishes isomorphism classes of rank two matroids, and that decomposability of the quasisymmetric function of a rank two matroid mirrors the decomposability of its base polytope. An affirmative answer to the Hilbert basis question raised in [3] is given.
منابع مشابه
A quasisymmetric function for matroids
A new isomorphism invariant of matroids is introduced, in the form of a quasisymmetric function. This invariant • defines a Hopf morphism from the Hopf algebra of matroids to the quasisymmetric functions, which is surjective if one uses rational coefficients, • is a multivariate generating function for integer weight vectors that give minimum total weight to a unique base of the matroid, • is e...
متن کاملSymmetric and quasi-symmetric functions associated to polymatroids
To every subspace arrangement X we will associate symmetric functions P[X] and H[X]. These symmetric functions encode the Hilbert series and the minimal projective resolution of the product ideal associated to the subspace arrangement. They can be defined for discrete polymatroids as well. The invariant H[X] specializes to the Tutte polynomial T [X]. Billera, Jia and Reiner recently introduced ...
متن کاملScheduling problems
We introduce the notion of a scheduling problem which is a boolean function S over atomic formulas of the form xi ≤ xj . Considering the xi as jobs to be performed, an integer assignment satisfying S schedules the jobs subject to the constraints of the atomic formulas. The scheduling counting function counts the number of solutions to S. We prove that this counting function is a polynomial in t...
متن کاملRow-strict quasisymmetric Schur functions
Haglund, Luoto, Mason, and van Willigenburg introduced a basis for quasisymmetric functions called the quasisymmetric Schur function basis, generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through reverse column-strict tableaux. We introduce a new basis for quasisymmetric functions called the row-strict quasisymmetric Schur...
متن کاملSkew row-strict quasisymmetric Schur functions
Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict You...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 115 شماره
صفحات -
تاریخ انتشار 2008